Pii: S0020-7225(02)00180-5

نویسندگان

  • Prabir Daripa
  • Ranjan K. Dash
چکیده

A class of model equations that describe the bi-directional propagation of small amplitude long waves on the surface of shallow water is derived from two-dimensional potential flow equations at various orders of approximation in two small parameters, namely the amplitude parameter a 1⁄4 a=h0 and wavelength parameter b 1⁄4 ðh0=lÞ2, where a and l are the actual amplitude and wavelength of the surface wave, and h0 is the height of the undisturbed water surface from the flat bottom topography. These equations are also characterized by the surface tension parameter, namely the Bond number s 1⁄4 C=qgh20, where C is the surface tension coefficient, q is the density of water, and g is the acceleration due to gravity. The traveling solitary wave solutions are explicitly constructed for a class of lower order Boussinesq system. From the Boussinesq equation of higher order, the appropriate equations to model solitary waves are derived under appropriate scaling in two specific cases: (i) b ð1=3 sÞ6 1=3 and (ii) ð1=3 sÞ 1⁄4 OðbÞ. The case (i) leads to the classical Boussinesq equation whose fourth-order dispersive term vanishes for s 1⁄4 1=3. This emphasizes the significance of the case (ii) that leads to a sixth-order Boussinesq equation, which was originally introduced on a heuristic ground by Daripa and Hua [Appl. Math. Comput. 101 (1999) 159] as a dispersive regularization of the ill-posed fourth-order Boussinesq equation. 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0020-7225(02)00134-9

Hypersingular integrals of the type

متن کامل

Pii: S0020-7225(00)00032-x

The problem treated is that of convection in a ̄uid saturated porous layer, heated internally and where the gravitational ®eld varies with distance through the layer. The boundaries are assumed to be solid. It is proved that the principle of exchange of stabilities holds as long as the gravity ®eld and the integral of the heat sources both have the same sign. The proof is based on the idea of a...

متن کامل

Pii: S0020-7225(99)00110-x

We discuss the macroscopic properties of several classes of polar liquid crystalline phases. We focus on polar biaxial liquid crystalline phases made of achiral molecules with ̄uidity in two and three spatial dimensions. The classes we examine include polar biaxial nematic phases, orthogonal biaxial smectic phases with anisotropic in-plane ̄uidity and tilted polar biaxial smectic phases with in...

متن کامل

Pii: S0020-7225(99)00118-4

The asymptotic expansion technique is used to obtain the two-dimensional dynamic equations of thin micropolar elastic plates from the three-dimensional dynamic equations of micropolar elasticity theory. To this end, all the ®eld variables are scaled via an appropriate thickness parameter such that it re ̄ects the expected behavior of the plate. A formal power series expansion of the three-dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002